

PROJECT RESULT 2
Block Programming Tool Development for

Low-cost IoT Electronics: Facilino

Leopoldo Armesto Ángel
Universitat Politécnica de Valencia

larmesto@idf.upv.es

Abstract
This document describes project result 2 of EcoThings project where we have developed

block programming tools aimed to be used for low-cost IoT Electronics. In particular, in
this document, we will describe activities related to the development of Facilino, a block

programming tool based on Blockly that is used to generate code for low-cost electronics
such as Arduino, Raspberry Pi and ESP32.

Contents
1. Introduction .. 2

a. Background and Motivation .. 2

b. Highlights ... 2

2. Main Results .. 4

a. Old Facilino version versus Facilino OTA ... 4

b. Open source and free software .. 4

c. Front-end and Back-end ... 4

d. User’s account .. 5

e. Project’s dashboard .. 8

f. Facilino OTA Server ... 12

g. Block simplification and feature extension .. 19

h. Block filters ... 20

i. Tutorial and Project-related Exercises .. 21

j. Translation tool ... 26

k. Over-the-air (OTA) ... 27

l. Documentation ... 27

References ... 28

1. Introduction

Block programming tools are one of the most powerful tools that educators have in their

hands to teach programming skills to pupils. Based on their simplicity for connecting blocks

together, they can cope with complex code generation. Blockly [1] is, probably, the most

widely used tool to develop block programming software. It is basically divided into two

aspects, the block shape generator and the code generator. In this sense, Facilino is a

software that uses Blockly to generate code for low-cost electronics such as Arduino,

Raspberry Pi and ESP32.

a. Background and Motivation

Facilino [2], was originally developed by Leopoldo Armesto (UPV) in a collaboration with a

local SME, Robotica Fácil [3], to provide solutions for schools so the can integrate different

kind of STEAM activities within their curricula. From the beginning, Facilino has shown

interest in their community. Originally, the software was planned as a free-ware software, as

part of the agreement for development. Therefore, many blocks were free to use, but others,

require a license.

Taking Facilino as a basis and considering that the old version of Facilino was not

maintained anymore (last published release is dated on end of 2019), we consider that

EcoThings project brings a great opportunity to retake the development under a completely

different approach. For obvious reasons, we have kept the original software name,

trademark and logo, but now it’s development is fully maintained by the UPV. Indeed, this

approach has shown to have an impact on the community because some people already

use Facilino and thus the new version sound familiar to them and thus showed interest in

learning more about this new version of Facilino. Due to the previous collaboration with

Robótica Facil, we could reach a sector that was precisely of interest of this project. When

presenting the new version we referred to EcoThings project.

b. Highlights

During the project execution, we have made a big effort in readapting many aspects:

 Hosting: The new version is hosted at the UPV servers, and it will be maintained by

the UPV.

 Totally free software: All blocks can be now used for free.

 Front-end & back-end development: Facilino works now with a front-end based on

HTML and Javascript (in the client side), while it runs PHP and MySQL in the server

side.

 User’s account: We have included a simple account log in, registration, password

recovery and user’s profile.

 Project’s dashboard: Users can manage their own projects, once logged in.

 Facilino OTA Server: This tool allows Facilino to compile code and upload it to the

electronics. The main advantage, compare to the previous version is that now, all

dependencies of the code generated by Facilino are now integrated in a single tool.

 Block simplification and feature extension: Some original blocks of Facilino have

been simplified and in some cases. Also, we have developed new blocks that have

considered relevant to boost code development those related with EcoThings

project. Blockly includes the possibility to generate shadow blocks, which is a great

utility to generate default inputs for a specific block instruction, so that users can

quickly find out how to use a instruction without the need of reading documentation

about it.

 Block filters: The set of block instructions of Facilino has become large, which

might be confusing for non-experienced users. For that reason, we have included

block filters that will show blocks that can be typically used for a specific project type.

In particular, EcoThings project has its own block filter, which means that most of the

blocks that one can expect to use within EcoThings proposals, will be shown by

default and the rest will be hidden.

 Tutorial and Project-related exercises: Based on previous Tutorial exercises, the

new version of Facilino includes a set of tutorials to start coding. In the majority of

these tutorials and exercises, we propose connection diagrams and alternative

approaches that can be used too. We provide a problem description, hints, Facilino

code and a ThinkerCAD project embedded in the tutorial so that the proposed

exercise can be executed in a simulated environment, without need of physical

electronics. Similarly, we have just started documenting some specific exercises that

are related with some projects such a LED race or low-cost robotics platforms. We

have also started documenting the kind of exercises that can be used within the

EcoThings project.

 Translation tool: The new version of Facilino includes an easy-to-use translation

tool that aims to translate Facilino into multiple languages. So far, we have

translated Facilino into Spanish and other languages such as Catalonian, German,

Italian, French and Portuguese have been Google translated and are currently under

review.

 Over-the-Air (OTA): The new version of Facilino, includes a feature that allows to

program micro controller such as ESP8266 or ESP32 using an over-the-air feature.

In combination of Facilino OTA Server, a user can compile and upload code to a

specific device via WiFi, without need of physical USB cable. This represents a great

advantage for schools using tables or iPADs in their lab sessions.

 Documentation: This is a working progress feature, and it will be implemented in a

mid-term period (by the end of the project, if possible). The idea is to show specific

examples of how to use instructions. In PR4, we will particularly generate graphic

documentation on how to code with Facilino within EcoThings project.

2. Main Results

a. Old Facilino version versus Facilino OTA

Facilino is hosted at:

https://facilino.webs.upv.es/

This host will be maintained by the UPV even when the project is finished, with the purpose

of providing access to anyone who wants to use this tool.

b. Open source and free software

Facilino, also known as Facilino OTA, has been published as an open source software under

Apache 2.0 license. The new version of facilino is totally free, which means that we have

reimplemented the underlying code for those blocks so that now all of them generated code

at no cost.

The code has been published on GitHub (using the original account, but on a new

repository):

https://github.com/roboticafacil/facilino_ota

Together with Facilino OTA, users must install Facilino OTA Server, another open source

tool that is hosted at:

https://github.com/roboticafacil/facilino_ota_server

We have created a first release, with binary files for Windows and Ubuntu (also works in

LliureX).

c. Front-end and Back-end

Facilino uses a frontend/backend architecture, which means that when the user loads

Facilino web page, this page is served by a server running PHP. The server generated

HTML and javascript code that the client (frontend) renders into a web page. The server

make queries to a database using MySQL.

https://facilino.webs.upv.es/
https://github.com/roboticafacil/facilino_ota
https://github.com/roboticafacil/facilino_ota_server

In addition to this, it is interesting to understand how Facilino generates code to be uploaded

on electronics.

d. User’s account

In order to use Facilino, users must create an account. When not logged in, a red box

informs the user that needs to login in order to code. Login can be done by clicking on the

top right icon at the menu bar.

HTML & Javascript PHP & MySQL

If a user has an account, it can simply log in to start coding, otherwise, the user will need to

create an account to as indicated in the login page.

Registration page, ask for few personal data and language preference (currently only english

and spanish):

Users can recover their password if they do not remember and they will receive an email

with a link to reset their password:

Once clicking on the link, they just need to set a new password and the user’s account

password will be updated.

Once logged in, they can access to their user profile to update their name of language

preferences. User’s can also apply for an account upgrade in which the can participate in the

Translation program or Academy program. These two programs are described below so that

users can contribute to the development of Facilino.

e. Project’s dashboard

User’s can create projects that will be included in their project’s dashboard. So far, this is a

simple dashboard where all users’ projects are listed and they can duplicate a project,

delete, edit, download code, etc… We are considering to include a search/filtering tool so

that when users start have a big amount of projects, can be easily found.

To create a project, users must click on “New Project” link and a form with all possible

options will be shown.

Users must provide a project’s name, select the board they plan to use, Facilino’s version,

the block instruction set as well as the language. All these options can be modified later

once the project is created. They can also select the Server IP and the Device IP for Facilino

OTA settings.

Facilino generates Arduino code for multiple type of boards. It works with several Arduino

processors such as Arduino Uno; Espressif boards such as ESP8266 and ESP32 and

Raspberry Pi. Facilino blocks instructions are identical in most cases, while the generate

code adapted to the specific board, which greatly abstracts many issues related to hardware

abstraction compared to classic text coding. So far, we have included a subset of boards,

but this can be extended in the future to include new ones:

While Facilino is a code generation tool, the actual code will be uploaded to using Facilino

OTA Server (see next section). This will will upload code either through USB, selecting

Facilino version, or over the air selecting Facilino OTA. We have also created a simplified

version of Facilino (using USB), named as Facilino Junior where most of the blocks have

been adapted to a simpler way of use, while limiting obviously the full capacity of the tool if

advanced instructions were used instead.

Finally, the user must select a Block Instruction set. The purpose of this selection is to filter

some blocks that the user will not use depending on the type of project he/she intends to do.

In that sense, the option by default is a generic project with the full set of instructions, while

other projects such as robotic projects or EcoThings project will require a different kind of

instructions. Thus, by selecting a specific project, some instructions will not be shown by

default and therefore, it’s easier for non-experienced users to find the instructions they need

to user for their actual needs.

f. Facilino OTA Server

You can download here Facilino OTA Server. Select the appropriate version for your OS.

1. Download Files

First, download Facilino OTA Server. Be advised that these downloads have been

taken from Robotica Facil's GitHub, where you can find the source code of the

application and old releases.

2. Facilino OTA Server Windows Installer

Click on the installer to execute it. Your computer might give a warning as the

Installation comes from an unknown source. Simply, give permision under the

extended tab option. The Facilino OTA Server is complety safe and does not pose a

threat to your computer. Indeed, Facilino OTA Server actually is a port to the Facilino

web page and Arduino-CLI. The web page generates code based on blocks, while

Arduino CLI is the software that compiles your code so it is highly recommended to

check that has been properly installed after the installation process finishes, including

all boards and libraries required by Facilino, otherwise, compiling and uploading code

might fail.

When executing Facilino OTA Server Installer, you should see the following window:

Select the installation location, this is automatically set to your folder

C:\FacilinoOTAServer. We recommend you not to change this path.

Then installation should start immediately and a progress bar should be visible. This

installation might take a few minutes, particularly when installing Arduino libraries,

because they will be first downloaded and then installed.

3. Facilino OTA Server Windows ZIP (for non-admin users)

Unzip Facilino OTA Server and cd to the unzipped folder and type config.bat in the

command shell. You should see on the shell output all arduino-cli commands required

by Facilino to be able to compile and upload code to the supported boards and

libraries.

4. Facilino OTA Server on Ubuntu

Untar Facilino OTA Server and cd to the uncompressed folder and bash config.sh in

the console. You should see on the shell output all arduino-cli commands required by

Facilino to be able to compile and upload code to the supported boards and libraries.

5. Arduino CLI

Open the command shell and move to Facilino OTA Server directory (i.e.:

C:\FacilinoOTAServer). Then, cd to arduino-cli folder and type arduino-cli.exe core

list (on Windows) or ./arduino-cli core list (on Ubuntu). You should see a list of

supported boards:

If you type: arduino-cli.exe lib list you should see a list of installed libraries:

If any of the previous steps fails or during compilation of a program there's a missing

library, you can install them manually (see arduino-cli's help by typing arduino-

cli.exe -h on Windows or ./arduino-cli -h on Ubuntu).

6. Running Facilino OTA Server

You can run Facilino OTA Server from the command shell by typing

FacilinoOTAServer.exe -e on Windows or ./FacilinoOTAServer -e on Ubuntu (you

need to cd to Facilino installation folder).

Every time your computer restarts or you close the command shell, you will need to

manually execute Facilino OTA server so it can compile or upload code. This is OK if

you are the only user using the computer, however, if more users are about to use

Facilino (i.e. in a Lab room), in order to avoid copies of the same libraries for each

user, the recommended method is to install a service that runs automatically at boot

up.

IMPORANT: In order to run Facilino OTA Server as a service, it must be

installed by the administrator of the machine and the service must be installed

also by the same user. In that case, open a command shell with administrative

permission and cd to Facilino OTA Server and type FacilinoOTAServer.exe -i <user>

<password> on Windows or sudo ./FacilinoOTAServer -i <user> <password> on

Ubuntu, where <user> and <password> denotes the system user and password of the

computer with administrative permisions.

Now, start the service simply by executing the command FacilinoOTAServer.exe on

Windows or ./FacilinoOTAServer on Ubuntu. To stop the service, you can execute the

command FacilinoOTAServer.exe -t on Windows or ./FacilinoOTAServer -t on

Ubuntu.

It is recommended to check the status of the service through the Windows service

utility.

In Ubuntu, you can check if the service is running by executing the command lsof -

i:4000.

7. Compile & Upload

Here, we assume that you have registed an account on Facilino web page, if not,

please go to Register and complete the registration and log in.

Here, we assume that you have registed an account on Facilino web page, if not,

please go to Register and complete the registration and log in.

To check if Facilino OTA can compile and upload code, create a blank project. Goto

to the dashboard page Dashboard, click on New Project and select the desired

processor among the list of available ones; select Facilino as Facilino Version and

Generic Project Block Instruction Set and press Create.

Then, connect your board to the USB port and click on Compile & Upload. A window

will show up with the generated code (so far since the project is empty, only setup and

loop functions should appear). Select the board port in the dropdown list (if necessary

press the Refresh) and board:

Then, verify that the code compiles by click on Verify and then if succeed upload the

code by clicking on Upload.

Remark: Every time you change the code, you need to compile first and then upload,

otherwise the latest compiled code will be uploaded.

g. Block simplification and feature extension

While the previous version of Facilino included many blocks, in this new version, we have

included new blocks, updated existing ones and add shadow blocks to provide a hint on the

type of input that a block expects.

In particular, from the toolbox, we can see now all blocks variations so the user can directly

select the one that he/she is interested in (previously, only the default block aspect was

shown, but now we show all of them). For instance, the arithmetic block operation that

included summation, subtraction, multiplication and division in a one single block, now it is

shown as if they were four different blocks in the toolbox.

Also, on each input, we have added shadow blocks, which are default input values so that

the user does not need to add by himself/herself. Of course, the user can change this default

value to something which is more convenient for him/her, but in most of the cases, the

default value serves as a hint to the user to know which kind of input is expected, but also as

quick code generation, just by dragging few blocks.

We have updated, both the aspect and the code generated of some blocks, particularly

those related with Bluetooth, because we have developed an App Inventor extension that is

compatible with those blocks. Bluetooth-related blocks have also additional improvements.

Among them, we can highlight the fact that now we can transmit and receive data between

two ESP32 devices as long as one of them acts as master and the other one as slave. We

have also created new blocks, such as HTTP REST API blocks to communicate WiFi

devices with a mobile device via HTTP protocol. Another important block that has been

modified that is widely used are blocks related to GLOBAL variables. Now, this block is

simply added to the workspace, but not necessary in the setup as before. Since they are

global variables, their definition is not link to either to “setup” or “loop” sections. In addition to

this, PWM-related blocks have their own subcategory in the toolbox, which is easier to find

them (before they were included in the Analog section).

We have also included many new blocks that were not included in the old version, such as

servo motor attach/detach, ignore output, meArm-related blocks, HTU21D

temperature/humidity sensor block,

h. Block filters

When creating a project, we can select the type of project we intend to work with, which

affects to the block instruction set. For instance, a generic project will have all blocks

available by default, while other type of projects will show by default only some categories.

The following table summarizes the categories and subcategories shown for each type of

project:

Category Subcategory Project type

Functions - All

Control

Flow Control All

Programming Generic

Interrupts Generic

State machine Generic

Logic
- All

Bitwise Generic

Math

- All

Array Generic

Curve Generic

Variables

- All

Array Generic

EEPROM Generic

Text - All

Basic I/O

Analog All

Digital All

PWM All

Button Generic, Multisensor, Home Automation, LED
race

Bus Generic

Display

LCD 16x2 Generic, Multisensor, Home Automation

LED Matrix 8x8 Generic, DYOR

RGB LEDs Generic, DYOR, bPED, HomeAutomation

OLED 128x32 Generic, DYOR, bPED

Communication

USB All

Bluetooth All

WiFi All

Light

Infrared All

Colour Generic, DYOR, Multisensor, Home Automation

LDR Generic, DYOR, Multisensor, Home Automation

Dimmer Generic, Multisensor, Home Automation

Distance - All

Sound

Buzzer All

Music Generic, DYOR, bPED

MP3/WAV Generic, DYOR, bPED, Multisensor, Home
Automation

Movement

Motors All

Robot base Generic, DYOR

Robot
accessories

Generic, DYOR

Robot walk Generic, bPED

Robot arm Generic, mArm

System
Controller Generic

Filtering Generic

Environment

Temperature Generic, Multisensor, Home Automation

Humidity Generic, Multisensor, Home Automation

Rain Generic, Multisensor, Home Automation

Gas Generic, Multisensor, Home Automation

Miscellaneous Generic, Multisensor, Home Automation

i. Tutorial and Project-related Exercises

We have included a set of tutorials. The basic ones, have been fully integrated in the new

version of Facilino, which includes now TinkerCAD simulations to reproduce the proposed

exercises even without the need of programming the physical device. This basic exercises,

have been designed to understand how to use specific block instructions. On every tutorial, it

is explained which are the worked instructions and which are additional ones that will be

used in the exercises. Every exercise includes a description and a hint on how to solve it and

also includes the solution using Facilino code.

Also, we have created a set of exercises for specific projects.

As we can see, this is still a work-in-progress project and we hope to complete most of them

by the end of 2023.

Here we can see a TinkerCAD circuit simulation which includes code generated by Facilino

to reproduce a specific behaviour.

Here is a list with the number of examples created so far:

 Basic Exercises Intermediate Exercises

USB Serial Communication 5 2

Blinking LEDs 5 3

Logic 4 3

Flow Control 3 3

Functions and Procedures 4 3

Variables 4 3

Maths 4 3

Text 3 3

j. Translation tool

In order to provide a localization feature when using Facilino, we have included a translation

tool that we hope it will help to translate Facilino into multiple languages. The basic idea of

this tool is that a user applies for being part of the translation program, which means that

he/she will be able to provide translations of specific texts, words and sentences that are

used in Facilino and in their examples.

Based on previous contributors and an automated tool using Google translate services,

Facilino has been already translated into other languages, but it needs to be revised. Thus,

the translation tool asks a user to review/translate some text and he/she can modify it. Those

translations will be reviewed by a second reviewer (and possibly more), and then confirmed

added to the database.

To apply to the program, users must fill the following form:

Once filled and they apply, the administrator receives an email with the form data:

Here, you can see and example of a key to be translated/reviewed:

k. Over-the-air (OTA)

Facilino OTA can be used to program over-the-air devices such as ESP32 and ESP8266.

This is a feature that allows programming a device without USB cable.

When creating a new project, we must select Facilino OTA in order to be able to use this

feature:

l. Documentation

To be done.

3. Dissemination and Impact

Since Facilino has suffered from lots of changes, we decided to have an operational version

of it before disseminating with users that had used the previous version. However, during

development, we have perform several dissemination activities for small groups of users:

1) Santiago Apostol school has used the tool, during the academic year 2022/2023, with

their students to start learning the basics of coding with simple exercises such as

turning on a LED, both in a simulated environment using TinkerCAD and with actual

electronics using Facilino OTA. As a consequence, the tool has been testes on kids

aged 10-12 years old.

2) We have collaborated with a secondary school in Valencia, CE Marni, which is not

part of this association, but they were willing to use this new version for some of their

academic activities, because they were active users of the old version and decided to

implement during the academic year 2022/2023. As a consequence, the tool has

been tested on kids aged at 12-15 years old.

3) Leopoldo Armesto, has encouraged their university students to use this tool to

provide code templates as part of an academic work assignment consisting of

building a robot within a robotic course of the Industrial Electronics and Automation

degree at the UPV. As a consequence, the tool has been tested on adults too, with

the main purpose of generating code which they will adapt to their specific needs

later on.

4) Sara Blanch and Leopoldo Armesto have co-tutorized two vocational students

(Computer Science) performing an internship at the UPV, which have been also

using this tool to generate code in order to complete their tasks assignments.

References

[1] Blockly https://developers.google.com/blockly
[2] Facilino (old version) https://roboticafacil.es/facilino/blockly/Facilino.html
[3] Robótica Fácil https://roboticafacil.es

https://developers.google.com/blockly
https://roboticafacil.es/facilino/blockly/Facilino.html
https://roboticafacil.es/

